Contributions of the RAD51 N-terminal domain to BRCA2-RAD51 interaction

نویسندگان

  • Shyamal Subramanyam
  • William T. Jones
  • Maria Spies
  • M. Ashley Spies
چکیده

RAD51 DNA strand exchange protein catalyzes the central step in homologous recombination, a cellular process fundamentally important for accurate repair of damaged chromosomes, preservation of the genetic integrity, restart of collapsed replication forks and telomere maintenance. BRCA2 protein, a product of the breast cancer susceptibility gene, is a key recombination mediator that interacts with RAD51 and facilitates RAD51 nucleoprotein filament formation on single-stranded DNA generated at the sites of DNA damage. An accurate atomistic level description of this interaction, however, is limited to a partial crystal structure of the RAD51 core fused to BRC4 peptide. Here, by integrating homology modeling and molecular dynamics, we generated a structure of the full-length RAD51 in complex with BRC4 peptide. Our model predicted previously unknown hydrogen bonding patterns involving the N-terminal domain (NTD) of RAD51. These interactions guide positioning of the BRC4 peptide within a cavity between the core and the NTDs; the peptide binding separates the two domains and restricts internal dynamics of RAD51 protomers. The model's depiction of the RAD51-BRC4 complex was validated by free energy calculations and in vitro functional analysis of rationally designed mutants. All generated mutants, RAD51(E42A), RAD51(E59A), RAD51(E237A), RAD51(E59A/E237A) and RAD51(E42A/E59A/E237A) maintained basic biochemical activities of the wild-type RAD51, but displayed reduced affinities for the BRC4 peptide. Strong correlation between the calculated and experimental binding energies confirmed the predicted structure of the RAD51-BRC4 complex and highlighted the importance of RAD51 NTD in RAD51-BRCA2 interaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BRCA2 BRC motifs bind RAD51-DNA filaments.

Germ-line mutations in BRCA2 account for approximately half the cases of autosomal dominant familial breast cancers. BRCA2 has been shown to interact directly with RAD51, an essential component of the cellular machinery for homologous recombination and the maintenance of genome stability. Interactions between BRCA2 and RAD51 take place by means of the conserved BRC repeat regions of BRCA2. Prev...

متن کامل

Interactions between human BRCA2 protein and the meiosis-specific recombinase DMC1.

Germline mutations in BRCA2 predispose to hereditary breast cancers. BRCA2 protein regulates recombinational repair by interaction with RAD51 via a series of degenerate BRC repeat motifs encoded by exon 11 (BRCA2(996-2113)), and an unrelated C-terminal domain (BRCA2(3265-3330)). BRCA2 is also required for meiotic recombination. Here, we show that human BRCA2 binds the meiosis-specific recombina...

متن کامل

Smarcal1-Mediated Fork Reversal Triggers Mre11-Dependent Degradation of Nascent DNA in the Absence of Brca2 and Stable Rad51 Nucleofilaments

Brca2 deficiency causes Mre11-dependent degradation of nascent DNA at stalled forks, leading to cell lethality. To understand the molecular mechanisms underlying this process, we isolated Xenopus laevis Brca2. We demonstrated that Brca2 protein prevents single-stranded DNA gap accumulation at replication fork junctions and behind them by promoting Rad51 binding to replicating DNA. Without Brca2...

متن کامل

Microcephalin regulates BRCA2 and Rad51-associated DNA double-strand break repair.

Microcephalin (MCPH1) is a BRCA1 COOH terminal (BRCT) domain containing protein involved in the cellular response to DNA damage that has been implicated in autosomal recessive primary microcephaly. MCPH1 is recruited to sites of DNA double-strand breaks by phosphorylated histone H2AX (gammaH2AX), but the mechanism by which MCPH1 contributes to the repair process remains to be determined. Here, ...

متن کامل

Stabilization of RAD-51-DNA filaments via an interaction domain in Caenorhabditis elegans BRCA2.

Mutations in BRCA2 predispose individuals to breast cancer, a consequence of the role of BRCA2 in DNA repair. Human BRCA2 interacts with the recombinase RAD51 via eight BRC repeats. Controversy has existed, however, about whether the BRC interactions are primarily with RAD51 monomers or with the RAD51-DNA helical polymer, and whether there is a single interaction or multiple ones. We show here ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2013